Licenciatura en Enseñanza y Aprendizaje de la Física en Educación Secundaria

Plan de Estudios 2018

Programa del curso

Mecánica

Primer semestre
Primera edición: 2018

Esta edición estuvo a cargo de la Dirección General de Educación Superior para Profesionales de la Educación
Av. Universidad 1200. Quinto piso, Col. Xoco,
C.P. 03330, Ciudad de México

D.R. Secretaría de Educación Pública, 2018
Indice

Descripción general del curso ...4
Presentación ...4
Propósito General ..5
Competencias del perfil de egreso a las que contribuye el curso7
Estructura del curso ...9
Orientaciones para el aprendizaje y enseñanza10
Sugerencias de evaluación ...13
Unidad de aprendizaje I ..15
Cuantificación de los estados de movimiento15
Unidad de aprendizaje II ...22
Momento lineal: Cambio y conservación22
Unidad de aprendizaje III ...29
Energía mecánica: cambio y conservación29
Descripción general del curso

Presentación
La enseñanza de la Física se enfrenta a diversos obstáculos que dificultan la comprensión y aplicación de los conceptos propios de la materia por parte de la población adolescente y juvenil que cursa la educación obligatoria, prueba de ello son los bajos resultados obtenidos por México en la prueba PISA de 2015, en la cual “se evaluó a cerca de 540 000 estudiantes de 15 años de edad en 72 países, sobre sus competencias en ciencias, lectura, matemáticas y resolución de problemas de manera colaborativa.” (OCDE, 2016). En dicha aplicación de la prueba, la disciplina principal fue la de ciencias, en la que México se ubicó por debajo de la media de la Organización para la Cooperación y el Desarrollo Económicos (OCDE), al igual que en matemáticas y lectura.

Estos resultados reflejan la necesidad de contar con una planta docente formada por competencias, que sea autónoma, con pensamiento crítico, con la capacidad de tomar decisiones considerando los principios y reglas establecidas por la sociedad, que tenga la iniciativa de crear nuevas metodologías para la enseñanza de las ciencias integrando a su práctica docente el uso de las tecnologías de la información y la comunicación, tanto en nivel básico como en media superior, dada su obligatoriedad a partir de 2013. Se requieren profesores o profesoras que, además de la didáctica, tenga un amplio conocimiento de la Física, por ello el presente curso de mecánica se desarrolla a partir de un enfoque experimental en el que se retoma la evolución de los conceptos a lo largo de la historia, además de los resultados de investigaciones relacionadas con las ideas previas de adolescentes y jóvenes en conceptos fundamentales como el de fuerza, cantidad de movimiento y energía.

En la literatura, se reporta el uso indistinto de los conceptos de fuerza y de energía por parte de la población adolescente y juvenil que cursa la educación obligatoria; de forma análoga el de cantidad de movimiento y fuerza. Estos conceptos, a pesar de estar relacionados, pertenecen a categorías diferentes, la energía se ubica en el conjunto de las propiedades que caracterizan a un sistema mientras que la fuerza se entiende como una interacción entre sistemas, por otra parte, la fuerza puede modificar el estado de movimiento del objeto o sistema sobre el que se ejerce, sin embargo, existen sistemas de referencia en los que esto no necesariamente es válido. Así mismo, está documentado que el pensamiento científico que se forma el estudiantado a partir de sus experiencias es de carácter aristotélico, es decir, se basa en su mayoría en la intuición.

El curso de Mecánica, forma parte del trayecto formativo Formación para la Enseñanza y Aprendizaje de la Física, es de carácter obligatorio y cuenta con una carga horaria de 6 horas/semana, con una correspondencia de 6.75 créditos. Se encuentra ubicada en el primer semestre del Plan de Estudios de la licenciatura, su temática se enfoca en la mecánica de una partícula. Aportará la capacidad para realizar experimentos, identificar variables, realizar mediciones, recolectar y analizar información obtenida a partir de la experimentación, interpretar y evaluar resultados, además desarrollará habilidades para utilizar representaciones múltiples que le permitirán construir modelos mentales, los cuales comparará con los modelos científicos construidos a lo
largo de la historia, adicionalmente utilizará a la matemática como herramienta y como lenguaje formal para el estudio de los fenómenos naturales.

Propósito General

El curso de Mecánica se ha dividido en tres unidades de aprendizaje:

Unidad de aprendizaje 1. Cuantificación de los estados de movimiento

Unidad de aprendizaje 2. Momento lineal: cambio y conservación

Unidad de aprendizaje 3. Energía mecánica: cambio y conservación

Bajo la premisa “no se puede enseñar lo que no se sabe” la preparación de un docente en formación que se encuentre cursando la Licenciatura en Enseñanza y Aprendizaje de la Física en Educación Secundaria LEAF, debe aportar en su preparación un conocimiento sólido y profundo de la disciplina, además de desarrollar en él las competencias necesarias que le servirán para afrontar su vida laboral, por ello se considera que la importancia que tiene este curso para la formación del futuro egresado de la LEAF recae en dos aspectos básicos, que se separan para tener una clara idea de ellos, pero que se entrelazan cuando se mira el camino que se tuvo que recorrer para lograr el conocimiento científico en la actualidad. El primer aspecto es la historia y epistemología de los conceptos fundamentales de la Mecánica, el segundo aspecto es la formación disciplinar, compuesta por la conjunción entre la modelación científica basada en herramientas matemáticas y la experimentación. Esto se fundamenta en el enfoque experimental adoptado para la LEAF, cuyo modelo de enseñanza-aprendizaje principal es el inductivo, sustentado en la teoría cognitiva del aprendizaje.

Tomando en cuenta que la población que ingresa a la licenciatura tiene aproximadamente 18 años, de acuerdo a los estudios realizados por Shayer y Adley (1986 y 2002) en el Reino Unido, es probable que se encuentren en la transición del estadio concreto al formal, por lo que es más fácil partir de aspectos tangibles hacia la formalización, es decir, pueden trabajar con modelos abstractos a partir de los referentes concretos. Un estudio actualizado en el bachillerato de la Universidad Nacional Autónoma de México (UNAM), muestra resultados similares a los anteriores. Por ello, la temática del curso se estructuró teniendo en cuenta por una parte, la historia y la epistemología de la mecánica de una partícula, y por otra, los conocimientos mínimos necesarios para que al egresar cuenten con un buen dominio de la temática del curso y de esta manera fomentar el desarrollo de las competencias disciplinares establecidas en el Plan de Estudios de LEAF.

El conocimiento que el estudiantado construya en este curso, a través del desarrollo de competencias genéricas, profesionales y disciplinares, favorecerá su formación como docente de Física en la educación obligatoria. Así mismo, le servirá como base para futuros cursos disciplinares en la LEAF y en su futura especialización, si así lo desea.
El propósito general de este curso es que el estudiantado comprenda y aplique los conceptos propios en la cuantificación del movimiento de una partícula, de la formulación newtoniana del movimiento de una partícula y de la formulación basada en la energía de la mecánica de una partícula, a través de una revisión histórica y epistemológica y del uso de representaciones múltiples (verbales, iconográficas, gráficas, esquemáticas, algebraicas y tabulares), esto para representar e interpretar situaciones cotidianas utilizando el lenguaje matemático propio de la Física, y para diseñar experimentos que ayuden a la construcción conceptual de los términos propios de la mecánica de una partícula.

La educación llega hasta una persona desde una estructura construida por la sociedad y le forma para ser lo que es, en memoria, pensamientos, sentimientos, percepción, atención y algunas combinaciones, como el carácter, y todo esto depende de los materiales que se le vayan proporcionando. Por lo que la malla curricular es importante para lograr un fin: la formación de profesores de Física que, a su vez, formen estudiantes en la educación secundaria.

En el caso de la Mecánica, tiene como antecedentes los cursos de carácter científico que han llevado en la educación media superior y que se encuentran dentro de la formación formal.

Los cursos con las que se relaciona en el mismo semestre de la licenciatura son:

- Álgebra para Física: se relaciona por los despejes de incógnitas, cálculos analíticos e interpretación de modelos matemáticos en la Física.
- Experimentación y modelización: se relaciona por la adecuada y pensada reproducción de experimentos para comprender conceptos de mecánica: como por ejemplo los planos inclinados de Galileo.

Los cursos consecuentes en la licenciatura son:

- Materia y sus interacciones: Ayuda a comprender el modelo cinético de la materia y la mecánica de fluidos.
- Geometría plana y analítica para Física: su relación está utiliza en la comprensión de marcos de referencia, vectores y diferentes tipos de movimientos.

Este curso fue elaborado por docentes normalistas, personas especialistas en la materia y en el diseño curricular provenientes de las siguientes instituciones: Vladimir Carlos Martínez Nava, Escuela Normal Superior “Prof. Moisés Sáenz Garza”; José Guadalupe Rodríguez Muñoz, Escuela Normal Superior “Prof. Moisés Sáenz Garza”; Rafael Paredes Galán, Escuela Normal Superior del Estado de Baja California Sur “Prof. Enrique Estrada Lucero” Ext. Cd. Constitución; Ma. Consuelo Aidé Flores Ceballos, Escuela Normal Superior del Estado de Baja California Sur “Prof. Enrique Estrada Lucero”; David Corrales Valadez, Escuela Normal Superior de Nayarit; José Antonio Fragoso Uroz, Departamento de Física de la Facultad de Ciencias, UNAM; María del Rosario Adriana Hernández Martínez, Escuela Nacional Preparatoria 4, UNAM; Luis Ángel Vázquez Peralta, Colegio de Ciencias y Humanidades Plantel Sur, UNAM; María del Pilar Segarra Alberú, Departamento de Física de la Facultad de Ciencias, UNAM; Ana Flores Flores, Escuela Nacional Preparatoria 4, UNAM; Gladys Añorve Añorve, Julio César Leyva Ruiz, Refugio Armando Salgado Morales, Sandra Elizabeth Jaime
Martínez y Jessica Gorety Ortiz García de la Dirección General de Educación Superior para Profesionales de la Educación.

Competencias del perfil de egreso a las que contribuye el curso

Competencias genéricas

- Soluciona problemas y toma decisiones utilizando su pensamiento crítico y creativo.
- Aprende de manera autónoma y muestra iniciativa para autorregularse y fortalecer su desarrollo personal.
- Colabora con diversos actores para generar proyectos innovadores de impacto social y educativo.
- Utiliza las tecnologías de la información y la comunicación de manera crítica.
- Aplica sus habilidades lingüísticas y comunicativas en diversos contextos.

Competencias profesionales

Utiliza conocimientos de la Física y su didáctica para hacer transposiciones de acuerdo a las características y contextos de los estudiantes, a fin de abordar los contenidos curriculares de los planes y programas de estudio vigente.

- Relaciona sus conocimientos de la Física con los contenidos de otras disciplinas desde una visión integradora para propiciar el aprendizaje de sus estudiantes.

Diseña los procesos de enseñanza y aprendizaje de acuerdo con los enfoques vigentes de la Física, considerando el contexto y las características de los estudiantes para lograr aprendizajes significativos.

- Relaciona los contenidos de la Física con las demás disciplinas del Plan de Estudios vigente.

Evalúa los procesos de enseñanza y aprendizaje desde un enfoque formativo para analizar su práctica profesional.

- Diseña y utiliza diferentes instrumentos, estrategias y recursos para evaluar los aprendizajes y desempeños de los estudiantes considerando el tipo de saberes de la Física.

Gestiona ambientes de aprendizaje colaborativos e inclusivos para propiciar el desarrollo integral de los estudiantes.

- Emplea los estilos de aprendizaje y las características de sus estudiantes para generar un clima de participación e inclusión.
- Utiliza información del contexto en el diseño y desarrollo de ambientes de aprendizaje incluyentes.
- Promueve relaciones interpersonales que favorezcan convivencias interculturales.
Utiliza la innovación como parte de su práctica docente para el desarrollo de competencias de los estudiantes.

- Utiliza las Tecnologías de la Información y la Comunicación (TIC), Tecnologías del Aprendizaje y el Conocimiento (TAC), y Tecnologías del Empoderamiento y la Participación (TEP) como herramientas de construcción para favorecer la significatividad de los procesos de enseñanza y aprendizaje.

Actúa con valores y principios cívicos, éticos y legales inherentes a su responsabilidad social y su labor profesional con una perspectiva intercultural y humanista.

- Sustenta su labor profesional en principios y valores humanistas que fomenten dignidad, autonomía, libertad, igualdad, solidaridad y bien común, entre otros.
- Fundamenta su práctica profesional a partir de las bases filosóficas, legales y la organización escolar vigentes.
- Soluciona de manera pacífica conflictos y situaciones emergentes.

Competencias disciplinares

Demuestra comprensión profunda de los conceptos y principios físicos fundamentales, al plantear, analizar, resolver problemas y evaluar sus soluciones y procesos.

- Plantea problemas teóricos, experimentales, cuantitativos, cualitativos, abiertos y cerrados asociados a fenómenos físicos y procesos tecnológicos
- Analiza problemas teóricos, experimentales, cuantitativos, cualitativos, abiertos y cerrados asociados a fenómenos físicos y procesos tecnológicos
- Resuelve problemas teóricos, experimentales, cuantitativos, cualitativos, abiertos y cerrados asociados a fenómenos físicos y procesos tecnológicos
- Evalúa soluciones y procesos de problemas teóricos, experimentales, cuantitativos, cualitativos, abiertos y cerrados asociados a fenómenos físicos y procesos tecnológicos
- Argumenta al plantear, analizar, resolver problemas y evaluar sus soluciones con base en el soporte teórico de la Física.

Construye y compara modelos mentales y científicos, identificando sus elementos esenciales y dominios de validez, como base para la comprensión de los fenómenos físicos.

- Construye modelos mentales para explicar fenómenos físicos identificando sus elementos esenciales y dominio de validez.
- Compara modelos mentales de fenómenos físicos con modelos conceptuales estableciendo semejanzas y diferencias entre ellos y valorando las ventajas y desventajas de unos y otros.
- Compara modelos conceptuales actuales de fenómenos físicos con los modelos que históricamente les precedieron y los valora como parte del proceso de construcción del conocimiento científico.

Utiliza representaciones múltiples para explicar conceptos, procesos, ideas, procedimientos y métodos del ámbito de la Física.
• Interpreta información dada mediante representaciones verbales, iconográficas, gráficas, esquemáticas, algebraicas y tabulares.
• Construye representaciones verbales, iconográficas, gráficas, esquemáticas, algebraicas y tabulares.
• Fundamenta el uso de una representación en particular de acuerdo a la intención comunicativa.
• Convierte representaciones de una forma a otra.

 Diseña y selecciona experimentos como base para la construcción conceptual de la Física.
• Evalúa la pertinencia de diferentes simulaciones y animaciones de fenómenos físicos de acuerdo con su intención didáctica.
• Diseña y ejecuta experimentos como medio didáctico para la construcción del campo conceptual.
• Evalúa el procedimiento y los resultados de los experimentos diseñados y ejecutados.

Representa e interpreta situaciones del ámbito de la Física utilizando las matemáticas como herramienta y lenguaje formal.
• Emplea modelos matemáticos para establecer relaciones entre variables físicas.
• Traduce un problema físico al lenguaje matemático e interpreta los resultados matemáticos en el contexto físico.
• Maneja procedimientos, relaciones y conceptos matemáticos básicos.

Estructura del curso

Unidad de aprendizaje 1. Cuantificación de los estados de movimiento
• Marco histórico: La evolución del concepto de movimiento desde los griegos hasta la actualidad
• Choques
• Cuantificación del movimiento

Unidad de aprendizaje 2: Momento lineal: Cambio y conservación.
• Conservación del momento lineal en una partícula
• Cambio de momento lineal igual a cero
• Intercambio de cantidad de movimiento
• Cambio de momento lineal distinto de cero

Unidad de aprendizaje 3. Energía mecánica: Cambio y conservación
• Cambio de energía cinética igual a cero
• Cambio de energía cinética distinto de cero
• Potencia mecánica
• Fuerzas conservativas y energía potencial
• Conservación de la energía mecánica
• Fuerzas disipativas
Unidad de aprendizaje 1
- Cuantificación de los estados de movimiento

Unidad de aprendizaje 2
- Momento lineal: cambio y conservación

Unidad de aprendizaje 3
- Energía mecánica: cambio y conservación

Orientaciones para el aprendizaje y enseñanza

Para el desarrollo de las actividades de este curso, se sugiere al menos tres reuniones del colectivo docente, para planear y monitorear las acciones del semestre, e incluso acordar evidencia de aprendizaje comunes.

Se recomienda incluir a la práctica docente el uso de las tecnologías y el trabajo colaborativo, en tanto que permiten desarrollar de manera transversal las competencias genéricas.

Con objeto de favorecer el desarrollo de las competencias, el profesorado podrá diseñar las estrategias pertinentes a los intereses, contextos y necesidades del grupo que atiende. No obstante, en este curso se presentan algunas sugerencias que tiene relación directa con los criterios de evaluación, los productos, las evidencias de aprendizaje y los contenidos disciplinares, así como con el logro del propósito y las competencias, ello a fin de que al diseñar alguna alternativa se cuiden los elementos de congruencia curricular.

Este curso, como ya se ha mencionado, se estructura en tres unidades de aprendizaje, cuya organización hace alusión al camino recorrido al construir el conocimiento de la Mecánica, en especial a la que se ocupa del estudio del movimiento de una partícula. Es cierto que la construcción de dicho conocimiento no fue lineal y tuvo avances y retrocesos, sin embargo, la forma de ordenar la temática además de reflejar grosso modo la historia y epistemología de los diferentes conceptos, da pauta a tener un hilo...
coherente para el desarrollo del conocimiento del estudiante referente al movimiento de una partícula, el cual se puede resumir en dos cuestiones:

¿Los objetos se mueven de la misma forma o hay diferentes tipos de movimiento?
¿Qué causa que los objetos se muevan?

En este curso el estudiantado establece un primer acercamiento a dar respuesta a estas dos cuestiones, por una parte, revisando de manera general el contexto histórico y el trabajo de diferentes personajes icónicos de la Física que contribuyeron a responder estas incógnitas, y por otra, realizando la experimentación pertinente para comprender los conceptos, hipótesis y modelos científicos que dieron base a la mecánica de una partícula. Ya que, desde el constructivismo social, cada estudiante es quien posibilita su propio aprendizaje en un contexto social y aprende explorando lo que le rodea, por lo que una de las prioridades de los programas en las escuelas normales, es aprovechar dicha curiosidad llevando el mundo exterior al aula a través de experimentos, visitas a empresas, museos, etc.

Otro aspecto importante a considerar es la interacción entre estudiantes, por ejemplo, al formar equipos, lo cual es una estrategia recomendable, que provoca que las o los estudiantes trabajen en colaboración para alcanzar objetivos comunes. Éstos se benefician de esta interacción: compartiendo ideas, comprendiendo apropiadamente, articulando su pensamiento y facilita el proceso de formación del conocimiento; aprenden a pensar colaborativamente, edificando sobre el entendimiento de los otros y negociando los significados cuando sus ideas difieren.

Por esto se debe tener en consideración en el curso los siguientes puntos:

- Desarrollar modelos bien delimitados que puedan reproducirse sin complicación en un laboratorio de ciencias y aula de clases de cualquier Escuela Normal en México y posteriormente ellos los puedan adecuar a las condiciones de las escuelas de educación obligatoria del país.
- Los materiales que se utilicen podrán ser tanto instrumental de laboratorio como materiales de fácil acceso incluyendo la reutilización y el reciclaje de materiales.
- Plantearse preguntas y formular hipótesis, así como diseñar algún proceso experimental para aceptarlas o refutarlas.
- Registrar, ordenar, analizar, interpretar y vincular la información para comunicar de diferentes maneras.
- Retomar el contexto histórico de la Física para el desarrollo de los conceptos y para la reproducción de algunos experimentos.
- Interesar al estudiantado a través de realizar experimentos que dieron paso a tecnologías utilizadas en nuestra vida diaria.
- Pueden coexistir diferentes metodologías en la ciencia, no existe una única (inductivo, deductivo, hipotético-deductivo, etc.).
- Promover la interdisciplinariedad de las ciencias y humanidades.
- Desarrollar el pensamiento crítico del docente en formación para discernir entre información sustentada sobre bases científicas de aquella que no lo está.
- El uso de simulaciones, aplicaciones y animaciones para la mejor comprensión de conceptos abstractos.

Así mismo, atendiendo a las orientaciones y enfoques generales de la licenciatura de enseñanza y aprendizaje de la Física: enfoque basado en competencias, centrado en
la o el estudiante y flexibilidad curricular y académica, como a las competencias genéricas, profesionales y disciplinares, y al propósito general del curso, se recomienda que el personal docente, aplique al comienzo de cada temática alguna estrategia que posibilite la recuperación de los conocimientos previos en torno al tema que será abordado, y con ello realizar su planeación en la que contemple una situación problema, que motive a la población estudiantil a indagar de manera colaborativa con sus pares y profesores sobre la historia y epistemología de los conceptos físicos relacionados con la situación problema, así como a experimentar para establecer una respuesta o una posible forma de análisis de la situación problema, al establecer hipótesis, comprender conceptos, analizar resultados y discutir sobre posibles conclusiones. La situación problema puede ser presentada o tratada mediante las metodologías Aprendizaje Basado en Problemas, Aprendizaje Basado en Proyectos, o cualquier otra que favorezca el desarrollo de los temas y competencias.

También se sugiere que durante el semestre se considere algún proyecto que integre los aprendizajes de todo el curso, por lo que será necesario el trabajo colegiado entre docentes para el diseño de actividades comunes que permitan el desarrollo de distintas competencias, a partir de la interdisciplinariedad. Así como la entrega de un sólo producto evaluable desde los propósitos de los distintos cursos. Lo que se recomienda es la:

- Elaboración de experimentos que ayuden a la comprensión de los conceptos, así como a construir a partir de modelos mentales modelos científico, donde el análisis teórico se deberá contextualizar a la temática tratada en el curso de Álgebra para Física, la parte teórica Física en el curso de Mecánica y la experimental en la de Experimentación y modelización.

- Elaboración de actividades de enseñanza-aprendizaje o productos (videos documentales, historietas, comic’s, antología de cuentos, etc.) que ayuden a la comprensión de la temática tratada o que integren los diferentes aprendizajes del curso; si está en la posibilidad del personal docente, proponer un proyecto en conjunto con los demás cursos del mismo semestre.

Se recomienda que los diferentes avances del proyecto se evalúen a lo largo de las unidades de aprendizaje, dejando a consideración del profesorado a cargo del curso el número de avances a entregar, el formato, lo que deberá contener cada avance y la elección del instrumento de evaluación que mejor se adapte a las necesidades.

También se sugiere al personal docente a cargo que, además de considerar una evaluación diagnóstica, se tenga en cuenta la evaluación formativa y sumativa a lo largo del curso, de acuerdo a las características y necesidades del grupo que atiende. Asimismo, se sugiere al personal docente que, en las secuencias didácticas que diseñe para el desarrollo de las unidades de aprendizaje, se incorporen:

- Tecnologías del Aprendizaje y el Conocimiento (TAC).
- Tecnologías de la Información y la Comunicación (TIC).

Así mismo se recomienda que se promuevan:

- Acciones de expresión oral y escrita.
- Un ambiente de colaboración en el aula.
- La experimentación para la construcción de conceptos y modelos científicos
• La relación entre los cursos del mismo semestre y el trabajo colaborativo para el logro de los aprendizajes; vinculando los saberes de manera integral a situaciones cotidianas.

Además de que se revisen:
• Los programas vigentes de la educación obligatoria.
• Las referencias sugeridas en el curso.

El personal docente a cargo deberá de mantenerse en constante actualización en conocimientos de frontera relacionados con la temática de curso.

Sugerencias de evaluación

En congruencia con el enfoque del Plan de Estudios, se propone que la evaluación sea un proceso permanente que permita valorar de manera gradual la manera en que cada estudiante moviliza sus conocimientos, ponen en juego sus destrezas y desarrollan nuevas actitudes utilizando los referentes teóricos y experienciales que el curso propone.

La evaluación sugiere considerar los aprendizajes a lograr y a demostrar en cada una de las unidades del curso, así como su integración final. De este modo se propicia la elaboración de evidencias parciales para las unidades de aprendizaje.

La elaboración de cada evidencia se valorará considerando el alcance de la misma en función del aprendizaje a demostrar. La ponderación podrá determinarla el profesorado titular del curso de acuerdo a las necesidades, intereses y contextos de la población normalista que atiende.

La primera evidencia que el estudiantado demuestra es la comprensión de los conceptos: magnitud Física, unidad de medida, marco de referencia, partícula, posición, desplazamiento, trayectoria, distancia recorrida, velocidad y rapidez, al plantear, analizar, resolver problemas y evaluar sus soluciones y procesos. Así como la comparación de modelos conceptuales actuales de los estados de movimiento de los objetos con los modelos que históricamente les precedieron y los valora como parte del proceso de construcción del conocimiento científico.

La segunda evidencia es la comprensión de los conceptos y principios físicos fundamentales de la formulación newtoniana de la Mecánica de una partícula, al plantear, analizar, resolver problemas y evaluar sus soluciones y procesos. Así como la construcción de modelos mentales y su comparación con modelos científicos de la formulación newtoniana de la Mecánica de una partícula, identificando sus elementos esenciales y dominios de validez, como base para la comprensión de los fenómenos físicos mecánicos.

La tercera evidencia que presenta la población estudiantil, consiste en la comprensión de los conceptos y principios físicos fundamentales de la formulación basada en la energía de la mecánica de una partícula, al plantear, analizar, resolver problemas y evaluar sus soluciones y procesos. Así como la construcción de modelos mentales y su comparación con los modelos científicos de la formulación basada en la energía de
la mecánica de una partícula, identificando sus elementos esenciales y dominios de validez, como base para la comprensión de los fenómenos físicos mecánicos.

En este sentido, es importante considerar que se trata de una evidencia de aprendizaje que se va modificando y complejizando en la medida en que el colectivo de estudiantes, coordinados por el docente, incorporan, procesan, analizan, comparan y usan distintos tipos de información y la convierten en una herramienta para su propio aprendizaje.

Las sugerencias de evaluación, como se plantean en el Plan de Estudios, consiste en un proceso de recolección de evidencias sobre un desempeño competente de cada estudiante con la intención de construir y emitir juicios de valor a partir de su comparación con un marco de referencia constituido por las competencias, sus unidades o elementos y los criterios de desempeño; al igual que en la identificación de aquellas áreas que requieren ser fortalecidas para alcanzar el nivel de desarrollo esperado en cada uno de los cursos del Plan de Estudios y en consecuencia en el perfil de egreso.

De ahí que las evidencias de aprendizaje, se constituyan no sólo en el producto tangible del trabajo que se realiza, sino particularmente en el logro de una competencia que articula sus tres esferas: conocimientos, destrezas y actitudes.

Es importante que el profesorado recuerde que una opción de titulación es el portafolio de evidencias, por lo que se sugiere informar al inicio de cada unidad de aprendizaje, cuáles son los productos susceptibles a integrarse al portafolio de evidencias.
Unidad de aprendizaje I
Cuantificación de los estados de movimiento

Competencias a las que contribuye la unidad de aprendizaje

Competencias genéricas
- Soluciona problemas y toma decisiones utilizando su pensamiento crítico y creativo.
- Aprende de manera autónoma y muestra iniciativa para autorregularse y fortalecer su desarrollo personal.
- Colabora con diversos actores para generar proyectos innovadores de impacto social y educativo.
- Utiliza las tecnologías de la información y la comunicación de manera crítica.
- Aplica sus habilidades lingüísticas y comunicativas en diversos contextos.

Competencias profesionales
Utiliza conocimientos de la Física y su didáctica para hacer transposiciones de acuerdo con las características y contextos de los estudiantes, a fin de abordar los contenidos curriculares de los planes y programas de estudio vigente.
- Relaciona sus conocimientos de la Física con los contenidos de otras disciplinas desde una visión integradora para propiciar el aprendizaje de sus estudiantes.

Diseña los procesos de enseñanza y aprendizaje de acuerdo con el enfoque vigente de la Física, considerando el contexto y las características de los estudiantes para lograr aprendizajes sustentables.
- Relaciona los contenidos de la Física con las demás disciplinas del Plan de Estudios vigente.

Evalúa los procesos de enseñanza y aprendizaje desde un enfoque formativo para analizar su práctica profesional.
- Diseña y utiliza diferentes instrumentos, estrategias y recursos para evaluar los aprendizajes y desempeños de los estudiantes considerando el tipo de saberes de la Física.

Gestiona ambientes de aprendizaje colaborativos e inclusivos para propiciar el desarrollo integral de los estudiantes.
- Emplea los estilos de aprendizaje y las características de sus estudiantes para generar un clima de participación e inclusión.
- Utiliza información del contexto en el diseño y desarrollo de ambientes de aprendizaje incluyentes.
- Promueve relaciones interpersonales que favorezcan convivencias interculturales.
Utiliza la innovación como parte de su práctica docente para el desarrollo de competencias de los estudiantes.

- Utiliza las Tecnologías de la Información y la Comunicación (TIC), Tecnologías del Aprendizaje y el Conocimiento (TAC), y Tecnologías del Empoderamiento y la Participación (TEP) como herramientas de construcción para favorecer la significatividad de los procesos de enseñanza y aprendizaje.

Actúa con valores y principios cívicos, éticos y legales inherentes a su responsabilidad social y su labor profesional con una perspectiva intercultural y humanista.

- Sustenta su labor profesional en principios y valores humanistas que fomenten dignidad, autonomía, libertad, igualdad, solidaridad y bien común, entre otros.
- Fundamenta su práctica profesional a partir de las bases filosóficas, legales y la organización escolar vigentes.
- Soluciona de manera pacífica conflictos y situaciones emergentes.

Competencias disciplinarias

Demuestra comprensión profunda de los conceptos y principios físicos fundamentales, al plantear, analizar, resolver problemas y evaluar sus soluciones y procesos.

- Plantea problemas teóricos, experimentales, cuantitativos, cualitativos, abiertos y cerrados asociados a fenómenos físicos y procesos tecnológicos.
- Analiza problemas teóricos, experimentales, cuantitativos, cualitativos, abiertos y cerrados asociados a fenómenos físicos y procesos tecnológicos.
- Resuelve problemas teóricos, experimentales, cuantitativos, cualitativos, abiertos y cerrados asociados a fenómenos físicos y procesos tecnológicos.
- Evalúa soluciones y procesos de problemas teóricos, experimentales, cuantitativos, cualitativos, abiertos y cerrados asociados a fenómenos físicos y procesos tecnológicos.
- Argumenta al plantear, analizar, resolver problemas y evaluar sus soluciones con base en el soporte teórico de la Física.

Construye y compara modelos mentales y científicos, identificando sus elementos esenciales y dominios de validez, como base para la comprensión de los fenómenos físicos.

- Construye modelos mentales para explicar fenómenos físicos identificando sus elementos esenciales y dominio de validez.
- Compara modelos mentales de fenómenos físicos con modelos conceptuales estableciendo semejanzas y diferencias entre ellos y valorando las ventajas y desventajas de unos y otros.
- Compara modelos conceptuales actuales de fenómenos físicos con los modelos que históricamente les precedieron y los valora como parte del proceso de construcción del conocimiento científico.

Utiliza representaciones múltiples para explicar conceptos, procesos, ideas, procedimientos y métodos del ámbito de la Física.

- Interpreta información dada mediante representaciones verbales, iconográficas, gráficas, esquemáticas, algebraicas y tabulares.
• Construye representaciones verbales, iconográficas, gráficas, esquemáticas, algebraicas y tabulares.
• Fundamenta el uso de una representación en particular de acuerdo a la intención comunicativa.
• Convierte representaciones de una forma a otra.

Diseña y selecciona experimentos como base para la construcción conceptual de la Física.
• Evalúa la pertinencia de diferentes simulaciones y animaciones de fenómenos físicos de acuerdo con su intención didáctica.
• Diseña y ejecuta experimentos como medio didáctico para la construcción del campo conceptual.
• Evalúa el procedimiento y los resultados de los experimentos diseñados y ejecutados.

Representa e interpreta situaciones del ámbito de la Física utilizando las matemáticas como herramienta y lenguaje formal.
• Emplea modelos matemáticos para establecer relaciones entre variables Físicas.
• Traduce un problema físico al lenguaje matemático e interpreta los resultados matemáticos en el contexto físico.
• Maneja procedimientos, relaciones y conceptos matemáticos básicos.

Propósito de la unidad de aprendizaje
El propósito de esta unidad es que el o la estudiante comprenda los conceptos básicos en la cuantificación del movimiento de una partícula, tales como magnitud y unidad Física, marco de referencia, partícula, posición, desplazamiento y velocidad, a través de la revisión histórica y epistemológica y del uso de representaciones múltiples (verbales, iconográficas, gráficas, esquemáticas, algebraicas y tabulares), esto para identificar, representar e interpretar situaciones cotidianas utilizando el lenguaje matemático propio de la descripción del movimiento, y para diseñar experimentos y modelos que ayuden a la construcción conceptual de los términos de la cuantificación del movimiento.

Contenidos

Marco histórico: La evolución del concepto de movimiento desde los griegos hasta la actualidad
• El movimiento desde Los Griegos
• Concepto aristotélico de movimiento
• Concepto medieval de movimiento
• Galileo sus estudios sobre el movimiento
• Descartes y sus experimentos
• Newton y su momento lineal (vis insita)
• Huygens, Leibniz y su vis viva
Choques

- Ejemplos de choques o colisiones entre dos objetos
- Reglas y clasificación de colisiones entre dos objetos
- Características y elementos de los distintos tipos de colisiones

Cuantificación del movimiento

- Magnitud Física (Longitud, masa, tiempo)
- Unidades de Medida (unidades fundamentales de longitud, masa y tiempo en el SI)
- Marco de referencia (coordenadas cartesianas, coordenadas polares y relación entre coordenadas cartesianas y polares)
- Partícula
- Posición y desplazamiento
- Trayectoria y distancia recorrida
- Velocidad y rapidez

Actividades de aprendizaje

A continuación, se presentan algunas sugerencias didácticas para abordar los contenidos de la unidad, cada docente formador podrá adaptarlas o sustituirlas de acuerdo a los intereses, contextos y necesidades del grupo que atiende.

- Presentar preguntas o situaciones detonantes para la temática. La respuesta o las posibles formas de análisis se pueden alcanzar a través de la indagación que conlleva una investigación bibliográfica, la elaboración de experimentos para darle respuesta a posibles hipótesis, análisis de resultados y discusión sobre posibles respuestas. Finalizar con la comunicación, por escrito u oral, de lo que resulta al indagar sobre la evolución del concepto de movimiento y de la aplicación de los conceptos magnitud Física, unidad de medida, marco de referencia, partícula, posición, desplazamiento, trayectoria, distancia recorrida, velocidad y rapidez, utilizando en la medida de lo posible Tecnologías del Aprendizaje y el Conocimiento (TAC) y por ende las TIC.

Ejemplo de preguntas o situaciones:

- Si dos objetos de igual tamaño chocan de frente, ¿su velocidad se mantiene después de la colisión?
- Si un cuerpo con el doble de tamaño que otro, chocase con este último de frente, con ambos teniendo la misma rapidez ¿cómo cambian sus velocidades después del choque?
- Si un cuerpo con el doble de tamaño que otro, chocase con este último de frente, con el de mayor tamaño teniendo la rapidez mayor ¿la dirección de movimiento de ambos cambia?
- Si un cuerpo con rapidez distinta de cero colisiona con otro objeto con la misma masa, pero estático, las velocidades después del choque ¿cómo se relacionan?
- Fragmentos de vídeos (series de televisión, películas, etc.) que muestren alguna situación física relacionada con la temática y que pueda ponerse a discusión si la situación presentada es posible en la realidad.
- Plantear y resolver problemas abiertos o indefinidos que muestren una comprensión de la temática:
 - ¿Qué se necesita para ubicar un objeto?
 - Una persona ¿puede tener la misma rapidez mientras su velocidad cambia continuamente?
 - El desplazamiento de un auto después de moverse y quedarse quieto ¿puede ser nulo mientras que la distancia que recorrió no es cero?
 - Si el metro se define en el Sistema Internacional de Unidades (SI) como la distancia que recorre la luz en el vacío en un tiempo de 1/299 792 458 s, debido a que la rapidez de luz es constante y su valor es exacto de manera matemática, en el vacío es de 299 792 458 m/s. Si la definición del metro es una convención ¿por qué no se definió como la distancia que recorre la luz en el vacío en un tiempo de 1/300 000 000 s?, pues es más fácil recordar el valor de 300 000 000 m/s que el valor 299 792 458 m/s?
- Utilizar simulaciones de laboratorio, para observar, analizar y estructurar hipótesis sobre las causas que hacen que los objetos tengan un movimiento constante o cambiante, para después si es posible, realizar un experimento real que corroborre las conclusiones. Por ejemplo: Laboratorio de colisiones en https://phet.colorado.edu/sims/collision-lab/collision-lab_es.html
- Elaboración de experimentos que ayuden a la comprensión de los conceptos, así como a construir a partir de modelos mentales modelos científicos.
- Elaboración de actividades de enseñanza-aprendizaje o productos (vídeos, historietas, cómics, etc.) que ayuden a la comprensión de la temática tratada.

Evidencias

El personal docente puede escoger alguna de las siguientes evidencias para evaluar el aprendizaje del estudiantado:

- Pruebas escritas
- Planteamiento del experimento con control de variables.
- Comparación por escrito (ensayo, dibujo, esquema comparativo)
- Exposición de su comparación entre su modelo y el modelo científico de la mecánica clásica, así como de las conclusiones de investigaciones bibliográficas; de los resultados, los procesos de contrastación de hipótesis y conclusiones de experimentos; o del proceso y justificación del diseño de algún

Criterios de desempeño

Conocimientos

- Comprende los conceptos: magnitud física, unidad de medida, marco de referencia, partícula, posición, desplazamiento, trayectoria, distancia recorrida, velocidad y rapidez, al plantear, analizar, resolver problemas y evaluar sus soluciones y procesos.

Habilidades

- Compara modelos conceptuales actuales de los estados de movimiento de los objetos con los modelos que históricamente les precedieron y los valora como parte del proceso de construcción del conocimiento científico.
- Utiliza representaciones múltiples para explicar los
experimento, utilizando TAC y por ende TIC.

- Plantea y resolver problemas
- Contenido audiovisual
- Avances de su proyecto integrador

conceptos: magnitud física, unidad de medida, marco de referencia, partícula, posición, desplazamiento, trayectoria, distancia recorrida, velocidad y rapidez, y su interrelación para la cuantificación de los estados de movimiento.

- Evalúa el procedimiento y los resultados de los experimentos ejecutados para cuantificar los estados de movimiento de un objeto.
- Maneja procedimientos, relaciones y conceptos matemáticos básicos.
- Emplea modelos matemáticos para establecer relaciones entre variables Físicas que den cuenta a la cuantificación del movimiento.
- Traduce un problema físico al lenguaje matemático e interpreta los resultados matemáticos en el contexto físico.
- Maneja las tecnologías de la información y la comunicación para búsqueda de información y la sistematización de la misma.

Actitudes

- Muestra autonomía en su proceso de aprendizaje.
- Muestra perseverancia para concluir con las tareas y actividades.

Valores

- Respetar las opiniones, ideas y participaciones de los colegas.

Bibliografía básica

A continuación, se presenta un conjunto de textos de los cuales el profesorado podrá elegir aquellos que sean de mayor utilidad, o bien, a los cuales tenga acceso, pudiendo sustituirlos por textos más actuales.

Bibliografía complementaria

Recursos de apoyo

Unidad de aprendizaje II
Momento lineal: Cambio y conservación

Competencias a las que contribuye la unidad de aprendizaje

Competencias genéricas
- Soluciona problemas y toma decisiones utilizando su pensamiento crítico y creativo.
- Aprende de manera autónoma y muestra iniciativa para autorregularse y fortalecer su desarrollo personal.
- Colabora con diversos actores para generar proyectos innovadores de impacto social y educativo.
- Utiliza las tecnologías de la información y la comunicación de manera crítica.
- Aplica sus habilidades lingüísticas y comunicativas en diversos contextos.

Competencias profesionales
Utiliza conocimientos de la Física y su didáctica para hacer transposiciones de acuerdo con las características y contextos de los estudiantes, a fin de abordar los contenidos curriculares de los planes y programas de estudio vigente.
- Relaciona sus conocimientos de la Física con los contenidos de otras disciplinas desde una visión integradora para propiciar el aprendizaje de sus estudiantes.

Diseña los procesos de enseñanza y aprendizaje de acuerdo con el enfoque vigente de la Física, considerando el contexto y las características de los estudiantes para lograr aprendizajes sustentables.
- Relaciona los contenidos de la Física con las demás disciplinas del Plan de Estudios vigente.

Evalúa los procesos de enseñanza y aprendizaje desde un enfoque formativo para analizar su práctica profesional.
- Diseña y utiliza diferentes instrumentos, estrategias y recursos para evaluar los aprendizajes y desempeños de los estudiantes considerando el tipo de saberes de la Física.

Gestiona ambientes de aprendizaje colaborativos e inclusivos para propiciar el desarrollo integral de los estudiantes.
- Emplea los estilos de aprendizaje y las características de sus estudiantes para generar un clima de participación e inclusión.
- Utiliza información del contexto en el diseño y desarrollo de ambientes de aprendizaje incluyentes.
- Promueve relaciones interpersonales que favorezcan convivencias interculturales.
Utiliza la innovación como parte de su práctica docente para el desarrollo de competencias de los estudiantes.
- Utiliza las Tecnologías de la Información y la Comunicación (TIC), Tecnologías del Aprendizaje y el Conocimiento (TAC), y Tecnologías del Empoderamiento y la Participación (TEP) como herramientas de construcción para favorecer la significatividad de los procesos de enseñanza y aprendizaje.

Actúa con valores y principios cívicos, éticos y legales inherentes a su responsabilidad social y su labor profesional con una perspectiva intercultural y humanista.
- Sustenta su labor profesional en principios y valores humanistas que fomenten dignidad, autonomía, libertad, igualdad, solidaridad y bien común, entre otros.
- Fundamenta su práctica profesional a partir de las bases filosóficas, legales y la organización escolar vigentes.
- Soluciona de manera pacífica conflictos y situaciones emergentes.

Competencias disciplinares

Demuestra comprensión profunda de los conceptos y principios físicos fundamentales, al plantear, analizar, resolver problemas y evaluar sus soluciones y procesos.
- Plantea problemas teóricos, experimentales, cuantitativos, cualitativos, abiertos y cerrados asociados a fenómenos físicos y procesos tecnológicos
- Analiza problemas teóricos, experimentales, cuantitativos, cualitativos, abiertos y cerrados asociados a fenómenos físicos y procesos tecnológicos
- Resuelve problemas teóricos, experimentales, cuantitativos, cualitativos, abiertos y cerrados asociados a fenómenos físicos y procesos tecnológicos
- Evalúa soluciones y procesos de problemas teóricos, experimentales, cuantitativos, cualitativos, abiertos y cerrados asociados a fenómenos físicos y procesos tecnológicos
- Argumenta al plantear, analizar, resolver problemas y evaluar sus soluciones con base en el soporte teórico de la Física.

Construye y compara modelos mentales y científicos, identificando sus elementos esenciales y dominios de validez, como base para la comprensión de los fenómenos físicos.
- Construye modelos mentales para explicar fenómenos físicos identificando sus elementos esenciales y dominio de validez.
- Compara modelos mentales de fenómenos físicos con modelos conceptuales estableciendo semejanzas y diferencias entre ellos y valorando las ventajas y desventajas de unos y otros.
- Compara modelos conceptuales actuales de fenómenos físicos con los modelos que históricamente les precedieron y los valora como parte del proceso de construcción del conocimiento científico.

Utiliza representaciones múltiples para explicar conceptos, procesos, ideas, procedimientos y métodos del ámbito de la Física.
- Interpreta información dada mediante representaciones verbales, iconográficas, gráficas, esquemáticas, algebraicas y tabulares.
● Construye representaciones verbales, iconográficas, gráficas, esquemáticas, algebraicas y tabulares.
● Fundamenta el uso de una representación en particular de acuerdo a la intención comunicativa.
● Convierte representaciones de una forma a otra.

Diseña y selecciona experimentos como base para la construcción conceptual de la Física.

● Evalúa la pertinencia de diferentes simulaciones y animaciones de fenómenos físicos de acuerdo con su intención didáctica.
● Diseña y ejecuta experimentos como medio didáctico para la construcción del campo conceptual.
● Evalúa el procedimiento y los resultados de los experimentos diseñados y ejecutados.

Representa e interpreta situaciones del ámbito de la Física utilizando las matemáticas como herramienta y lenguaje formal.

● Emplea modelos matemáticos para establecer relaciones entre variables Físicas.
● Traduce un problema físico al lenguaje matemático e interpreta los resultados matemáticos en el contexto físico.
● Maneja procedimientos, relaciones y conceptos matemáticos básicos.

Propósito de la unidad de aprendizaje

El propósito de esta unidad es que el estudiantado comprenda y aplique los conceptos propios de la formulación newtoniana del movimiento de una partícula tales como la conservación y el cambio del momento lineal, a través de una revisión histórica y epistemológica y del uso de representaciones múltiples (verbales, iconográficas, gráficas, esquemáticas, algebraicas y tabulares), esto para representar e interpretar situaciones cotidianas utilizando el lenguaje matemático propio de la Física y para diseñar experimentos que ayuden a la construcción conceptual de la formulación Newtoniana. En esta unidad la población estudiantil desarrollará las tres leyes de Newton analizando las condiciones para las cuales se produce un cambio del momento lineal igual o distinto de cero.

Contenidos

Conservación del momento lineal de una partícula

● Momento lineal, cantidad de movimiento o *momentum* caracter vectorial.
● Movimiento Rectilíneo Uniforme (MRU)
● Fuerza

Cambio de momento lineal igual a cero

● Fuerza neta: Diagrama de cuerpo libre
● Primera ley de Newton: Inercia
● Marcos de Referencia Inerciales

Intercambio de cantidad de movimiento
• Tercera Ley de Newton
• Diagramas de fuerzas de acción y reacción
• Momento lineal de un sistema de dos partículas
• Conservación del momento lineal en un sistema de dos partículas

Cambio de momento lineal distinto de cero
• Segunda ley de Newton
• Impulso
• Movimiento Rectilíneo Uniformemente Acelerado (MRUA)
• Movimiento acelerado (caída libre y tiro vertical, tiro parabólico, movimiento circular uniforme (MCU))

Actividades de aprendizaje

A continuación, se presentan algunas sugerencias didácticas para abordar los contenidos de la unidad, cada docente formador podrá adaptarlas o sustituirlas de acuerdo a los intereses, contextos y necesidades del grupo que atiende.

• Preguntas o situaciones detonantes para la temática. La respuesta o las posibles formas de análisis se pueden alcanzar a través de la indagación que conlleva una investigación bibliográfica, la elaboración de experimentos para darle respuesta a posibles hipótesis, análisis de resultados y discusión sobre posibles respuestas. Finalizar con una comparación, por escrito u oral, de lo que resulta al aplicar las leyes de Newton
 - ¿Todo cuerpo tiende al reposo?
 - ¿El cuerpo con mayor masa cae más rápido?
 - ¿Un corredor se puede acelerar a sí mismo?
 - Si un gordo choca contra una flaca ¿ambos aplican la misma fuerza?
 - Fragmentos de vídeos (series de televisión, películas, etc.) que muestren alguna situación Física relacionada con la temática y que pueda ponerse a discusión si la situación presentada es posible en la realidad. Ejemplo las caídas rectas del coyote en el correcaminos (video ejemplo https://www.youtube.com/watch?v=VEFmFMeXv3E)

• Planteará y resolverá problemas abiertos o indefinidos que muestren una comprensión de la temática:
 - Se lanza un cuerpo hacia arriba ¿qué altura máxima alcanzará?
 - Se deja caer un cuerpo desde una gran altura. ¿Cuál será su rapidez en el instante en que choque contra el suelo?
 - Si se suelta una pois que se mantiene girando ¿Cómo es la trayectoria que seguirá?

• Utilizar simulaciones de laboratorio, para afinar su modelo sobre el movimiento rectilíneo uniforme MRU, movimiento rectilíneo uniformemente acelerado MRUA, movimiento uniformemente acelerado (parabólico y uniformemente circular) MUA, por ejemplo:
 - “El hombre móvil”. https://phet.colorado.edu/es/simulation/legacy/moving-man
- “Movimiento de un proyectil”
 https://phet.colorado.edu/sims/html/projectile-motion/latest/projectile-motion_es.html

- Identificar los elementos, simplificaciones y límites de validez del modelo Newtoniano a través del análisis de las hipótesis del modelo y de resultados experimentales propios.
- Desarrollará el tema a partir del Teorema de Simon Stevin de fuerzas concurrentes.
- Lectura de artículos de investigación sobre problemáticas de aprendizaje en el área de mecánica basada en la formulación newtoniana, plantear cómo se utiliza esta información para la planeación de un tema.
- Elaboración de experimentos que ayuden a la comprensión de los conceptos, así como a construir a partir de modelos mentales modelos científicos.
- Elaboración de actividades de enseñanza-aprendizaje o productos (vídeos, historietas, comic’s, etc.) que ayuden a la comprensión de la temática tratada.

Evidencias

El personal docente puede escoger alguna de las siguientes evidencias para evaluar el aprendizaje del estudiantado:

- Pruebas escritas
- Planteamiento del experimento con control de variables.
- Comparación por escrito (ensayo, dibujo, esquema comparativo)
- Exposición de su comparación entre su modelo y el modelo científico de la mecánica clásica, así como de las conclusiones de investigaciones bibliográficas; de los resultados, los procesos de contrastación de hipótesis y conclusiones de experimentos; o del proceso y justificación del diseño de algún experimento, utilizando TAC y por ende TIC.
- Plantear y resolver problemas
- Contenido audiovisual
- Avances de su proyecto integrador

Criterios de desempeño

Conocimientos

- Comprende los conceptos y principios físicos fundamentales de la formulación newtoniana de la Mecánica de una partícula, al plantear, analizar, resolver problemas y evaluar sus soluciones y procesos.

Habilidades

- Construye modelos mentales y los compara con modelos científicos de la formulación newtoniana de la Mecánica de una partícula, identificando sus elementos esenciales y dominios de validez, como base para la comprensión de los fenómenos físicos mecánicos.
- Utiliza representaciones múltiples para explicar conceptos, procesos, ideas, procedimientos y métodos de la formulación newtoniana de la Mecánica de una partícula.
- Evalúa el procedimiento y los resultados de los experimentos diseñados y ejecutados para la construcción conceptual de la formulación newtoniana de Mecánica de una partícula.
- Representa e interpreta situaciones del ámbito de la formulación newtoniana de la Mecánica de una partícula, utilizando las
matemáticas como herramienta y lenguaje formal.
- Maneja las tecnologías de la información y la comunicación para búsqueda de información y la sistematización de la misma.

Actitudes
- Muestra autonomía en su proceso de aprendizaje.
- Muestra perseverancia para concluir con las tareas y actividades.

Valores
- Respetas las opiniones, ideas y participaciones de los colegas

Bibliografía básica

A continuación, se presenta un conjunto de textos de los cuales el profesorado podrá elegir aquellos que sean de mayor utilidad, o bien, a los cuales tenga acceso, pudiendo sustituirlos por textos más actuales.

Bibliografía complementaria

Recursos de apoyo

QuantumFracture (Productor). (2013). Las leyes de Newton en dos minutos [Youtube]. Recuperado de https://www.youtube.com/watch?v=_X-BTbwj3xU
Unidad de aprendizaje III
Energía mecánica: cambio y conservación

Competencias a las que contribuye la unidad de aprendizaje

Competencias genéricas

- Soluciona problemas y toma decisiones utilizando su pensamiento crítico y creativo.
- Aprende de manera autónoma y muestra iniciativa para autorregularse y fortalecer su desarrollo personal.
- Colabora con diversos actores para generar proyectos innovadores de impacto social y educativo.
- Utiliza las tecnologías de la información y la comunicación de manera crítica.
- Aplica sus habilidades lingüísticas y comunicativas en diversos contextos.

Competencias profesionales

Utiliza conocimientos de la Física y su didáctica para hacer transposiciones de acuerdo con las características y contextos de los estudiantes, a fin de abordar los contenidos curriculares de los planes y programas de estudio vigente.

- Relaciona sus conocimientos de la Física con los contenidos de otras disciplinas desde una visión integradora para propiciar el aprendizaje de sus estudiantes.

Diseña los procesos de enseñanza y aprendizaje de acuerdo con el enfoque vigente de la Física, considerando el contexto y las características de los estudiantes para lograr aprendizajes sustentables.

- Relaciona los contenidos de la Física con las demás disciplinas del Plan de Estudios vigente.

Evalúa los procesos de enseñanza y aprendizaje desde un enfoque formativo para analizar su práctica profesional.

- Diseña y utiliza diferentes instrumentos, estrategias y recursos para evaluar los aprendizajes y desempeños de los estudiantes considerando el tipo de saberes de la Física.

Gestiona ambientes de aprendizaje colaborativos e inclusivos para propiciar el desarrollo integral de los estudiantes.

- Emplea los estilos de aprendizaje y las características de sus estudiantes para generar un clima de participación e inclusión.

- Utiliza información del contexto en el diseño y desarrollo de ambientes de aprendizaje incluyentes.

- Promueve relaciones interpersonales que favorezcan convivencias interculturales.

Utiliza la innovación como parte de su práctica docente para el desarrollo de competencias de los estudiantes.
• Utiliza las Tecnologías de la Información y la Comunicación (TIC), Tecnologías del Aprendizaje y el Conocimiento (TAC), y Tecnologías del Empoderamiento y la Participación (TEP) como herramientas de construcción para favorecer la significatividad de los procesos de enseñanza y aprendizaje.

Actúa con valores y principios cívicos, éticos y legales inherentes a su responsabilidad social y su labor profesional con una perspectiva intercultural y humanista.

• Sustenta su labor profesional en principios y valores humanistas que fomenten dignidad, autonomía, libertad, igualdad, solidaridad y bien común, entre otros.
• Fundamenta su práctica profesional a partir de las bases filosóficas, legales y la organización escolar vigentes.
• Soluciona de manera pacífica conflictos y situaciones emergentes.

Competencias disciplinares

Demuestra comprensión profunda de los conceptos y principios físicos fundamentales, al plantear, analizar, resolver problemas y evaluar sus soluciones y procesos.

• Plantea problemas teóricos, experimentales, cuantitativos, cualitativos, abiertos y cerrados asociados a fenómenos físicos y procesos tecnológicos
• Analiza problemas teóricos, experimentales, cuantitativos, cualitativos, abiertos y cerrados asociados a fenómenos físicos y procesos tecnológicos
• Resuelve problemas teóricos, experimentales, cuantitativos, cualitativos, abiertos y cerrados asociados a fenómenos físicos y procesos tecnológicos
• Evalúa soluciones y procesos de problemas teóricos, experimentales, cuantitativos, cualitativos, abiertos y cerrados asociados a fenómenos físicos y procesos tecnológicos
• Argumenta al plantear, analizar, resolver problemas y evaluar sus soluciones con base en el soporte teórico de la Física.

Construye y compara modelos mentales y científicos, identificando sus elementos esenciales y dominios de validez, como base para la comprensión de los fenómenos físicos.

• Construye modelos mentales para explicar fenómenos físicos identificando sus elementos esenciales y dominio de validez.
• Compaga modelos mentales de fenómenos físicos con modelos conceptuales estableciendo semejanzas y diferencias entre ellos y valorando las ventajas y desventajas de unos y otros.
• Compaga modelos conceptuales actuales de fenómenos físicos con los modelos que históricamente les precedieron y los valora como parte del proceso de construcción del conocimiento científico.

Utiliza representaciones múltiples para explicar conceptos, procesos, ideas, procedimientos y métodos del ámbito de la Física.

• Interpreta información dada mediante representaciones verbales, iconográficas, gráficas, esquemáticas, algebraicas y tabulares.
• Construye representaciones verbales, iconográficas, gráficas, esquemáticas, algebraicas y tabulares.
- Fundamenta el uso de una representación en particular de acuerdo a la intención comunicativa.
- Convierte representaciones de una forma a otra.

Diseña y selecciona experimentos como base para la construcción conceptual de la Física.
- Evalúa la pertinencia de diferentes simulaciones y animaciones de fenómenos físicos de acuerdo con su intención didáctica.
- Diseña y ejecuta experimentos como medio didáctico para la construcción del campo conceptual.
- Evalúa el procedimiento y los resultados de los experimentos diseñados y ejecutados.

Representa e interpreta situaciones del ámbito de la Física utilizando las matemáticas como herramienta y lenguaje formal.
- Emplea modelos matemáticos para establecer relaciones entre variables Físicas.
- Traduce un problema físico al lenguaje matemático e interpreta los resultados matemáticos en el contexto físico.
- Maneja procedimientos, relaciones y conceptos matemáticos básicos.

Propósito de la unidad de aprendizaje

El propósito de esta unidad es que el estudiante comprenda y aplique los conceptos propios de la formulación basada en la energía del movimiento de una partícula tales como la conservación y el cambio de la energía mecánica, a través de una revisión histórica y epistemológica y del uso de representaciones múltiples (verbales, iconográficas, gráficas, esquemáticas, algebraicas y tabulares), esto para representar e interpretar situaciones cotidianas utilizando el lenguaje matemático propio de la descripción del movimiento, y para diseñar experimentos que ayuden a la construcción conceptual de los términos propios de la formulación basada en la energía mecánica. En esta unidad la población estudiantil desarrollará el principio de conservación de energía mecánica analizando las condiciones para las cuales se produce las transferencias de energía por trabajo.

Contenidos

Cambio de energía cinética igual a cero
- Energía cinética constante
- Revisión histórica de la epistemología del concepto de energía cinética
- Colisiones elásticas
- Trabajo

Cambio de energía cinética distinto de cero
- Transferencia de energía por trabajo
- Trabajo realizado por una fuerza constante
- Teorema de trabajo energía
Potencia mecánica
- Rapidez de transferencia de energía
- Producto de las magnitudes de fuerza y velocidad

Fuerzas conservativas
- Energía potencial
- Trabajo y cambio de energía potencial

Conservación de la energía mecánica
- Energía mecánica
- Ley de la conservación de la energía mecánica

Fuerzas disipativas
- Fuerza de fricción
- Fuerza de arrastre
- Disipación de la energía
- Colisiones inelásticas

Actividades de aprendizaje

A continuación, se presentan algunas sugerencias didácticas para abordar los contenidos de la unidad, cada docente formador podrá adaptarlas o sustituir las de acuerdo a los intereses, contextos y necesidades del grupo que atiende.

- Proponer para su análisis y argumentación situaciones cotidianas que hagan evidente un cambio en la energía de un cuerpo, resaltando las variables involucradas. Un ejemplo puede ser la presentación en vivo de un patinador al deslizarse en un medio tubo en forma de “U”, o una animación del mismo suceso, para la cual se sugiere la siguiente liga: (https://phet.colorado.edu/es/simulation/legacy/energy-skate-park

Las siguientes preguntas pueden apoyar el análisis:
- ¿Cuál es el instante de mayor nerviosismo de un patinero en la skatopistas?
- ¿Qué le empuja para iniciar su recorrido?
- Si la superficie del “tubo” es lisa o áspera ¿tendrá el patinador un mismo desempeño?
- ¿Cómo logra el patinador mantenerse en movimiento?
- ¿Qué sucede a las ruedas de la patineta si no están debidamente engrasadas?
- ¿Cuáles son los cambios de energía que suceden durante el recorrido del patinador?
- ¿Qué tipo de energía posee el patinador en la parte más alta de la rampa y en la parte más baja de la pista?
- ¿Qué energía tiene el patinador a la mitad del recorrido entre la parte más alta y la parte más baja?
- ¿Qué energía posee durante el movimiento?
- ¿Dónde se obtuvo la máxima velocidad y cómo se relaciona con la energía cinética?
- ¿Cuál es la relación entre la altura y la energía potencial?
- ¿Cómo es la energía total en todo el recorrido?
- ¿Qué pasa con las energías al aumentar y disminuir la masa?
- Al deslizar al patinador desde la altura máxima en las 3 pistas ¿cambio la energía total del sistema? Explica
- ¿Qué le pasa a la energía cinética y potencial durante el recorrido con fricción?
- Realizar la lectura: Breve historia del estudio del movimiento, (Gutiérrez Aranzeta, Carlos, pp. 51-54). y Elaborar un resumen con las ideas principales, identificando los elementos fundamentales asociados a la Energía cinética
 - Plantea y resuelve problemas abiertos o indefinidos que evidencien la comprensión del tema. Por ejemplo:
 - Al subir una cubeta de agua al segundo piso, comienzas a sentir cansancio en tus brazos y piernas, en mayor o menor medida según tu condición Física, ¿puedes explicar el por qué sientes dicho cansancio?
 - ¿Qué sucede si una persona atrapa una llave de la chapa de una puerta que le fue arrojada desde un cuarto piso?
 - Indagar y plantear problemas experimentales asociados a la transferencia de la energía, identificando las variables involucradas, demostrando el proceso y la comprensión del soporte fundamental de conceptos y principios físicos para su exposición, por ejemplo: Teorema de trabajo energía, el trabajo como transferencia de energía, energía cinética, energía potencial, disipación de la energía, potencia.
 - Plantea y resuelve un problema experimental basado en los principios físicos que le permiten calcular su propia potencia en las diferentes unidades de medición. Argumentando el proceso al exponer resultado.
 - Lectura de artículos de investigación sobre problemáticas de aprendizaje en el área de mecánica basada en la formulación de la energía, plantear cómo se utiliza esta información para la planeación de una secuencia didáctica sobre el tema.
 - Elaboración de experimentos que ayuden a la comprensión de los conceptos, así como a construir a partir de modelos mentales modelos científicos.
 - Elaboración de actividades de enseñanza-aprendizaje o productos (vídeos, historietas, comic’s, etc.) que ayuden a la comprensión de la temática tratada.

Evidencias

El personal docente puede escoger **alguna** de las siguientes evidencias para evaluar el aprendizaje del estudiantado:

- Pruebas escritas
- Planteamiento del experimento con control de variables.
- Comparación por escrito (ensayo, dibujo, esquema comparativo)
- Exposición de su comparación entre su modelo y el modelo científico de la mecánica clásica, así como de las conclusiones de investigaciones bibliográficas; de los resultados, los procesos de contratación de hipótesis y conclusiones de experimentos; o del proceso y

Criterios de desempeño

Conocimientos

- Comprende los conceptos y principios físicos fundamentales de la formulación basada en la energía de la mecánica de una partícula, al plantear, analizar, resolver problemas y evaluar sus soluciones y procesos.

Habilidades

- Construye modelos mentales y los compara con los modelos científicos de la formulación basada en la energía de la mecánica de una partícula, identificando sus elementos
justificación del diseño de algún experimento, utilizando TAC y por ende TIC.

- Plantear y resolver problemas
- Contenido audiovisual
- Avances de su proyecto integrador

esenciales y dominios de validez, como base para la comprensión de los fenómenos físicos mecánicos.

- Utiliza representaciones múltiples para explicar conceptos, procesos, ideas, procedimientos y métodos de la formulación basada en la energía de la mecánica de una partícula.

- Evalúa el procedimiento y los resultados de los experimentos diseñados y ejecutados para la construcción conceptual de la formulación basada en la energía de la mecánica de una partícula.

- Representa e interpreta situaciones del ámbito de la formulación basada en la energía de la mecánica de una partícula utilizando las matemáticas como herramienta y lenguaje formal.

- Maneja las tecnologías de la información y la comunicación para búsqueda de información y la sistematización de la misma.

Actitudes

- Muestra autonomía en su proceso de aprendizaje.

- Muestra perseverancia para concluir con las tareas y actividades.

Valores

- Respetar las opiniones, ideas y participaciones de los colegas.
Bibliografía básica

A continuación, se presenta un conjunto de textos de los cuales el profesorado podrá elegir aquellos que sean de mayor utilidad, o bien, a los cuales tenga acceso, pudiendo sustituirlos por textos más actuales.

Bibliografía complementaria

Recursos de apoyo

Perfil docente sugerido

Perfil académico
Licenciatura en el área de educación con especialidad en Física; en Física, o ingeniería (Civil, Eléctrica y Electrónica, GeoFísica, Geológica, Mecatrónica, Mecánica, Telecomunicaciones, Petrolera, Química, Ciencias de la Tierra, Física Biomédica) con formación docente demostrable (diplomados, especialidad, maestría o doctorado en el área de educación)

Preferentemente maestría o doctorado en el área de educación con especialidad en Física o maestría en Ciencias Físico - Matemáticas con formación para la docencia (diplomados, especialidad, maestría o doctorado en el área de educación)

Deseable: Experiencia de investigación en el área de enseñanza y aprendizaje de la Física

Nivel académico
Obligatorio nivel de licenciatura en el área de educación con especialidad en Física; en Física, o ingeniería (Civil, Eléctrica y Electrónica, GeoFísica, Geológica, Mecatrónica, Mecánica, Telecomunicaciones, Petrolera, Química, Ciencias de la Tierra, Física Biomédica) con formación docente demostrable (diplomados, especialidad, maestría o doctorado en el área de educación)

Maestría o doctorado en el área de educación con especialidad en Física o maestría físico-matemática, AstroFísica, Ciencias Físicas (Física Médica, Física) con formación docente demostrable (diplomados, especialidad, maestría o doctorado en el área de educación)

Deseable: Experiencia de investigación en el área de enseñanza y aprendizaje de la Física

Experiencia docente para
Conducir grupos de nivel básico (secundaria), nivel medio superior(bachillerato) y/o educación superior.
Planear y evaluar por competencias.
Utilizar las TIC y las Tecnologías del Aprendizaje y el Conocimiento (TAC) en los procesos de enseñanza y aprendizaje.
Retroalimentar oportunamente el aprendizaje de los estudiantes.

Experiencia profesional
Docente de educación superior con antigüedad mínima de dos años.
Referida a la experiencia laboral en la profesión sea en el sector público o privado.